Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.

Identifieur interne : 000305 ( Main/Exploration ); précédent : 000304; suivant : 000306

Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.

Auteurs : Felipe Verdugo [Canada] ; Justine Pelletier [Canada] ; Benjamin Michaud [Canada] ; Caroline Traube [Canada] ; Mickaël Begon [Canada]

Source :

RBID : pubmed:32587549

Abstract

Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger-key interaction. If scientific research has documented postural and expressive features of pianists' trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (staccato, short finger-key contact time, or tenuto, sustained finger-key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and staccato articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists' trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.

DOI: 10.3389/fpsyg.2020.01159
PubMed: 32587549
PubMed Central: PMC7298114


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.</title>
<author>
<name sortKey="Verdugo, Felipe" sort="Verdugo, Felipe" uniqKey="Verdugo F" first="Felipe" last="Verdugo">Felipe Verdugo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Input Devices and Music Interaction Laboratory, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Input Devices and Music Interaction Laboratory, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Justine" sort="Pelletier, Justine" uniqKey="Pelletier J" first="Justine" last="Pelletier">Justine Pelletier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Benjamin" sort="Michaud, Benjamin" uniqKey="Michaud B" first="Benjamin" last="Michaud">Benjamin Michaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Traube, Caroline" sort="Traube, Caroline" uniqKey="Traube C" first="Caroline" last="Traube">Caroline Traube</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Begon, Mickael" sort="Begon, Mickael" uniqKey="Begon M" first="Mickaël" last="Begon">Mickaël Begon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CHU Sainte-Justine Research Center, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CHU Sainte-Justine Research Center, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32587549</idno>
<idno type="pmid">32587549</idno>
<idno type="doi">10.3389/fpsyg.2020.01159</idno>
<idno type="pmc">PMC7298114</idno>
<idno type="wicri:Area/Main/Corpus">000239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000239</idno>
<idno type="wicri:Area/Main/Curation">000239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000239</idno>
<idno type="wicri:Area/Main/Exploration">000239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.</title>
<author>
<name sortKey="Verdugo, Felipe" sort="Verdugo, Felipe" uniqKey="Verdugo F" first="Felipe" last="Verdugo">Felipe Verdugo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Input Devices and Music Interaction Laboratory, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Input Devices and Music Interaction Laboratory, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Justine" sort="Pelletier, Justine" uniqKey="Pelletier J" first="Justine" last="Pelletier">Justine Pelletier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Benjamin" sort="Michaud, Benjamin" uniqKey="Michaud B" first="Benjamin" last="Michaud">Benjamin Michaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Traube, Caroline" sort="Traube, Caroline" uniqKey="Traube C" first="Caroline" last="Traube">Caroline Traube</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Begon, Mickael" sort="Begon, Mickael" uniqKey="Begon M" first="Mickaël" last="Begon">Mickaël Begon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CHU Sainte-Justine Research Center, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>CHU Sainte-Justine Research Center, Montreal, QC</wicri:regionArea>
<wicri:noRegion>QC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in psychology</title>
<idno type="ISSN">1664-1078</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger-key interaction. If scientific research has documented postural and expressive features of pianists' trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (
<i>staccato</i>
, short finger-key contact time, or
<i>tenuto</i>
, sustained finger-key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and
<i>staccato</i>
articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists' trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32587549</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-1078</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in psychology</Title>
<ISOAbbreviation>Front Psychol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.</ArticleTitle>
<Pagination>
<MedlinePgn>1159</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpsyg.2020.01159</ELocationID>
<Abstract>
<AbstractText>Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger-key interaction. If scientific research has documented postural and expressive features of pianists' trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (
<i>staccato</i>
, short finger-key contact time, or
<i>tenuto</i>
, sustained finger-key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and
<i>staccato</i>
articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists' trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.</AbstractText>
<CopyrightInformation>Copyright © 2020 Verdugo, Pelletier, Michaud, Traube and Begon.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Verdugo</LastName>
<ForeName>Felipe</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Input Devices and Music Interaction Laboratory, Schulich School of Music, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelletier</LastName>
<ForeName>Justine</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michaud</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Traube</LastName>
<ForeName>Caroline</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire de Recherche sur le Geste Musicien, Faculté de Musique, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Begon</LastName>
<ForeName>Mickaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, École de Kinésiologie et des Sciences de L'activité Physique, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CHU Sainte-Justine Research Center, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Psychol</MedlineTA>
<NlmUniqueID>101550902</NlmUniqueID>
<ISSNLinking>1664-1078</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">articulation</Keyword>
<Keyword MajorTopicYN="N">biomechanics</Keyword>
<Keyword MajorTopicYN="N">inverse kinematics</Keyword>
<Keyword MajorTopicYN="N">piano performance</Keyword>
<Keyword MajorTopicYN="N">touch</Keyword>
<Keyword MajorTopicYN="N">trunk motion</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32587549</ArticleId>
<ArticleId IdType="doi">10.3389/fpsyg.2020.01159</ArticleId>
<ArticleId IdType="pmc">PMC7298114</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Psychol. 2014 Mar 04;5:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24624099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sports Sci Med. 2014 Dec 01;13(4):742-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2019 Jan 10;9:2725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30687180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2017 Mar 1;117(3):1239-1257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28003410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2010 Jul 20;43(10):1976-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20434726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 1993 Dec;26(12):1403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2007 Jun 29;421(3):264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17574744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Med Sport. 2010 Jul;13(4):452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2009 Dec 1;164(2):822-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2018 Nov 05;9:2125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30455659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Biomech. 2007 May;23(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gait Posture. 2007 Mar;25(3):353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16733087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2008 Apr;186(3):471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2012 Mar;217(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2012 Aug 9;45(12):2180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22748323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Percept Psychophys. 1980 Nov;28(5):398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7208249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Eng Phys. 2016 Mar;38(3):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26774672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2008;41(3):581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2014;826:205-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sports Sci. 2009 Jul;27(9):949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19629844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Biomed Eng. 2007 Nov;35(11):1989-2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2005 Aug;118(2):1154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16158669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Electromyogr Kinesiol. 2015 Feb;25(1):14-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Motor Control. 2003 Jan;7(1):1-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12536160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2007 May;121(5 Pt1):2959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sports Health. 2010 Mar;2(2):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23015931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2013 Mar 21;4:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Athl Train. 2013 Nov-Dec;48(6):748-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23944382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2014 Nov;136(5):2839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25373983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2010 Jul 14;11:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Med Sci Sports. 2014 Oct;24(5):e381-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mov Sci. 2012 Feb;31(1):26-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Strength Cond Res. 2010 Feb;24(2):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20072065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e50901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2015 Jun 02;6:702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26082732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sports Sci Med. 2013 Jun 01;12(2):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24149800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Motor Control. 2008 Apr;12(2):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mov Sci. 2015 Apr;40:89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25544341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2013 Jul 16;7:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23882199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2008 Mar;185(4):581-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2001 Jul;110(1):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11508980</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Verdugo, Felipe" sort="Verdugo, Felipe" uniqKey="Verdugo F" first="Felipe" last="Verdugo">Felipe Verdugo</name>
</noRegion>
<name sortKey="Begon, Mickael" sort="Begon, Mickael" uniqKey="Begon M" first="Mickaël" last="Begon">Mickaël Begon</name>
<name sortKey="Begon, Mickael" sort="Begon, Mickael" uniqKey="Begon M" first="Mickaël" last="Begon">Mickaël Begon</name>
<name sortKey="Michaud, Benjamin" sort="Michaud, Benjamin" uniqKey="Michaud B" first="Benjamin" last="Michaud">Benjamin Michaud</name>
<name sortKey="Pelletier, Justine" sort="Pelletier, Justine" uniqKey="Pelletier J" first="Justine" last="Pelletier">Justine Pelletier</name>
<name sortKey="Traube, Caroline" sort="Traube, Caroline" uniqKey="Traube C" first="Caroline" last="Traube">Caroline Traube</name>
<name sortKey="Traube, Caroline" sort="Traube, Caroline" uniqKey="Traube C" first="Caroline" last="Traube">Caroline Traube</name>
<name sortKey="Verdugo, Felipe" sort="Verdugo, Felipe" uniqKey="Verdugo F" first="Felipe" last="Verdugo">Felipe Verdugo</name>
<name sortKey="Verdugo, Felipe" sort="Verdugo, Felipe" uniqKey="Verdugo F" first="Felipe" last="Verdugo">Felipe Verdugo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000305 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000305 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32587549
   |texte=   Effects of Trunk Motion, Touch, and Articulation on Upper-Limb Velocities and on Joint Contribution to Endpoint Velocities During the Production of Loud Piano Tones.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32587549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021